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Abstract. It has been demonstrated that mathematically consistent Yang–Mills gauge theories
can be constructed on the basis of a class of general Lie algebras called quasiclassical, which
contains reductive as well as a class of solvable Lie algebras. However, if we require that these
theories should be ghost-free, then only the standard gauge theories based upon compact Lie
algebras are allowed. Nevertheless, these solvable gauge theories may be relevant for some
integrable models based upon the zero-curvature condition.

1. Introduction

It is often stated in the literature that the non-Abelian Yang–Mills gauge theory can be
constructed only for semisimple Lie algebras. The standard argument is based upon the
following observation. Letta(a = 1, 2, . . . , N) be a basis of a Lie algebraL with the
multiplication table of

[ta, tb] = f cabtc. (1.1)

Let Aaµ(x) be the gauge field and set [1] as usual

Aµ(x) = taAaµ(x) (1.2a)

Fµν(x) = ∂µAν(x)− ∂νAµ(x)+ [Aµ(x), Aν(x)]. (1.2b)

The equation of motion should then be given by

∂λFλµ(x)+ [Aλ(x), Fλµ(x)] = 0. (1.3)

We ordinarily assume the LagrangianL(x) to be

L(x) = 1
4 Tr(adFµν(x)adFµν(x)) (1.4)

where ad is the adjoint representation. The action principle on the basis ofL(x), leads to
equation (1.3), if and only if the Killing form

gab = Tr(adtaadtb) (1.5)

is non-degenerate, i.e. it possesses its inversegab satisfying

gabg
bc = δca. (1.6)

Because of Cartan’s criteria [2] of semisimplicity, the non-degeneracy ofgab is equivalent
to the semisimplicity ofL.

However, this reasoning is unsatisfactory as well as inaccurate for the following reasons.
First, we cannot then formulate the Abelian gauge theory on the same footing, since the
Killing form of any Abelian Lie algebra is identically zero. Ordinarily, we treat Abelian
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gauge theory in a slightly different fashion. Since the standard model based upon the
SUC(3)⊗ SUL(2)⊗U(1) group is a gauge theory containing both semisimple and Abelian
Lie algebras (which is known as reductive Lie algebras), it will be more desirable to treat
both semisimple and Abelian gauge theories on an equal footing. Second, there may exist
another Lagrangian which is quadratic inFaµν(x) and which will reproduce equation (1.3)
for some non-semisimple Lie algebras.

The purpose of this paper is to address these questions. We shall first show that we
can indeed treat both Abelian and semisimple gauge theories in the same way. Second, we
can construct gauge theories for a large class of purely solvable Lie algebras. However, the
theory always has the defect of containing ghosts. Because of this, we conclude that only
physically viable gauge theory is indeed the one based upon compact Lie algebras.

Nevertheless, the gauge theories based upon solvable Lie algebras may be of some use
for other problems, such as integrable model [3] which utilizes the zero-curvature condition
Fµν(x) = 0. We will prove these assertions in section 2.

2. Quasi-classical Lie algebras

We assume in this paper thatL is a finite-dimensional Lie algebra over the complex field,
unless it is stated otherwise. Letρ(t) for tεL be a non-trivial representation matrix ofL
and set

gab = Tr[ρ(ta)ρ(tb)]. (2.1)

If L is simple, it is well known [2] thatgab given by equation (2.1) is always proportional
to gab defined by equation (1.5) with non-zero multiplicative constant. However, this is not
correct in general. We will first quote the following theorem of Bourbaki [4].

Theorem 1.Any one of the following statements is equivalent to all the others.
(1) L is reductive, i.e. its adjoint representation is completely reducible.
(2) The derived Lie sub-algebraL1 = [L,L] is semisimple.
(3) L is a direct sum of a semisimple Lie algebra and an Abelian Lie algebra.
(4) L has a finite-dimensional representationρ such thatgab given by equation (2.1) is

non-degenerate, i.e. it has its inversegab.
(5) L has a finite-dimensional faithful representation which is completely reducible.
(6) The radical ofL is the centre ofL.

Especially, ifL is a direct sum of a semisimple and an Abelian Lie algebra, there then
exists a representationρ such thatgab constructed by equation (2.1) is non-degenerate (we
shall return to this point shortly). Therefore, if we define a LagrangianL(x) now by

L(x) = 1
4 Tr[ρ(Fµν)ρ(F

µν)] (2.2)

instead of that given by equation (1.4), then it correctly reproduces the desired equation of
motion equation (1.3).

Theorem 1 also implies that this method does not work for Lie algebras other than
reductive ones. However, we can construct a more general gauge theory quadratic in
Faµν(x) in the following way. To this end, we need some preparations.

By a symmetric bilinear form (. , .) in L, it implies the validity of

(x, y) = (y, x) x, yεL. (2.3)

We say that it is an associative form if

([x, y], z) = (x, [y, z]) (2.4)
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holds valid for anyx, y, zεL. Finally, the bilinear form is non-degenerate, if(x, y) = 0 for
all xεL implies y = 0 in L. In [5], a Lie algebraL which possesses a symmetric, bilinear,
associative, non-degenerate, form(x, y) is called a quasiclassical Lie algebra. Because of
theorem 1, any reductive Lie algebra is automatically quasiclassical, if we identify

(ta, tb) = Tr(ρ(ta)ρ(tb))(= gab).
However, the converse is not true, as we can see from many examples given in [5–7].
Such Lie algebras have been utilized to construct a class of simple flexible Lie-admissible
algebras [5–7]. They have also been used to obtain some solutions of the Yang–Baxter
equation in [8].

Let L be a quasiclassical Lie algebra, spanned byN basis vectors,t1, t2, . . . , tN
satisfying equation (1.1). If we definegab by

gab = (ta, tb) (2.5)

and identifyx = ta, y = tb, andz = tc in equation (2.4), it gives

fabc = f dabgdc (2.6)

to be completely antisymmetric in three indicesa, b, c. Conversely, ifgab with its inverse
gab satisfies such a property, it defines a quasiclassical Lie algebra by introducing (. , .) in
L by equation (2.5). This fact implies that the most general gauge theory must be based
upon a quasiclassical Lie algebra. Hence, we assume hereafter thatL is quasiclassical.

Let G be the Lie group obtained by exponentiatingL, and set

g = exptεG (2.7)

for a elementtεL. Then by equation (2.4), it is easy to see

(g−1xg, y) = (x, gyg−1)

for any x, yεL. Replacingy by g−1yg, we find

(g−1xg, g−1yg) = (x, y). (2.8)

Changing notations, we reserve, for a while, the symbolx for the spacetime coordinate, and
set

L(x) = (Fµν(x), Fµν(x)) = gabFµν,a(x)Fµν,b (x). (2.9)

Let g(x) given by

g(x) = exp[ωa(x)ta] (2.10)

be the coordinate-dependent element ofG, whereωa(x) are functions of the spacetime
coordinatexµ. In view of equation (2.8), the LagrangianL(x) of equation (2.9) is invariant
under the local gauge transformation

Aµ(x)→ A′µ(x) = g−1(x)Aµ(x)g(x)− g−1(x)∂µg(x) (2.11a)

Fµν(x)→ F ′µν(x) = g−1(x)Fµν(x)g(x). (2.11b)

Moreover, sincegab is non-degenerate, the Lagrange equation of motion based upon
equation (2.9) will correctly reproduce equation (1.3). In conclusion, we can construct
a mathematically consistent Yang–Mills gauge theory, if and only if the underlying Lie
algebra is quasiclassical.

Before going into further details, we will state the following theorem [5] which
characterizes the quasiclassical Lie algebra.
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Theorem 2.A necessary and sufficient condition that a Lie algebraL is quasiclassical is
thatL possesses a second-order Casimir invariant

I2 = gabtatb (2.12)

such that the symmetric matrixgab(= gba) has its inversegab satisfying equation (1.6).

Proof. For I2 given by equation (2.12), we calculate

[I2, Ic] = (gbdf adc + gadf bdc)tatb (2.13)

so that [I2, Ic] = 0, is equivalent to have

gbdf adc + gadf bdc = 0. (2.14)

Multiplying gajgbk, and changing indices suitably, equation (2.14) is shown to be also
equivalent to

gadf
d
bc = −gbdf dac. (2.15)

However, equation (2.15) is the same statement as to say thatfabc defined by equation (2.6)
is totally antisymmetric ina, b, and c. Introducing (. , .) by equation (2.5), it proves then
that L is quasiclassical. Conversely ifL is quasiclassical, we can prove [I2, Ic] = 0 by
reversing the argument. �

Theorem 2 gives a practical way of constructinggab and hencegab. For example, letL
be a reductive Lie algebra. By theorem 1,L must be a direct sum of a semisimple algebra
L0 and an Abelian algebraL1, i.e. L = L0 ⊕ L1. Let us label the basis ofL0 andL1

by tj (j = 1, 2, . . . , n) for L0 and by tµ(µ = 1, 2, . . . , m) for L1. Then, a second-order
Casimir invariantI2 satisfying the condition of theorem 2 is readily found to be

I2 =
n∑

j,k=1

gjktj tk +
m∑
µ=1

ξµ(tµ)
2 (2.16)

where
∑n
j,k=1 g

jktj tk is the second-order Casimir invariant of the semisimple Lie algebra
L0 andξµ(µ = 1, 2, . . . , m) are arbitrary non-zero constants. This construction also shows
that a reductive Lie algebra is quasiclassical by theorem 2.

In this connection, we may note the following fact. It is known [9] that an absence of
the third-order Casimir invariant is intimately related to the absence of the triangle anomaly
in gauge theories. IfL is reductive with non-trivial Abelian part, it has always a third-order
Casimar invariant of form

I3 = I2I1+
m∑

µ,ν,λ=1

gµνλtµtνtλ (2.17)

for arbitrary constantsgµνλ whereI2 is given by equation (2.16) withξµ = 0 andI1 is the
first-order Casimir invariant of the Abelian algebraL1 given by

I1 =
m∑
µ=1

ηµtµ. (2.18)

Here,ηµ are arbitrary constants such that at least one of them is non-zero. The condition
that eigenvalues of any suchI3 should vanish for a given representation ofL then leads to
the familiar anomaly cancellation condition, although we will not go into detail here.

Returning to the original problem, Pateraet al [10] have listed all algebraically
independent Casimir invariants of all indecomposable real Lie algebras of dimensions three,
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four and five, as well as of all nilpotent Lie algebras of dimension six. From their list, we
can easily see that Lie algebrasA4,8, A4,10, A5,3 andA6,3 in their notation are quasiclassical
solvable indecomposable Lie algebras, since all of them possess second-order Casimir
invariants satisfying the condition of theorem 2. Moreover,A5,3 andA6,3 are nilpotent.
From these, we can construct an infinite class of indecomposable solvable quasiclassical
Lie algebras as we have shown in [5]. Here as an example, let us consider the Lie algebra
A4,8 whose non-zero commutation relations are specified by [10]

[t2, t3] = t1, [t2, t4] = t2, [t3, t4] = −t3. (2.19)

This algebra possesses the first- and second-order Casimir invariant of the form

I1 = t1
I2 = t2t3+ t3t2− 2t1t4.

(2.20)

Therefore, a non-trivial second-order Casimir invariant satisfying the condition of theorem 2
is given by

I ′2 = I2+ λ(I1)
2 = gabtatb (2.21)

for an arbitrary constantλ. We then find

gab =


λ 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 gab =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 −λ

 . (2.22)

It is amusing to note that this algebra also appears in a study of non-decomposable
representation of a Lie-super algebra in superspace [11]. The LagrangianL(x) given by
equation (2.9) is calculated to be

L(x) = 1
4

4∑
a,b=1

gabFµν,a(x)F
µν

,b (x)

= 1
2{Fµν,2(x)Fµν3 (x)− Fµν,1(x)Fµν4 (x)} + λ

4
Fµν,1(x)F

µν

1 (x). (2.23)

Evidently, equation (2.23) does not yield a positive definite Hamiltonian for any gauge
condition, so that the theory will contain ghost states when quantized. So we conclude that
the theory is unphysical.

This appearance of ghost states is inevitable for any quasiclassical Lie algebra except
for the case of compact Lie algebras which are automatically reductive [4]. We will prove
this in the following theorem. We revert to the old notation now so that the symbolx refers
to an element ofL hereafter.

Theorem 3.LetL be a quasiclassical real or complex Lie algebra. Suppose that any nilpotent
sub-Lie algebraB of L satisfying(B, B) = 0 impliesB = 0 identically. Then,L1 = [L,L]
is semisimple.

Proof. We will show thatL1 = [L,L] is semisimple. Suppose that this is not true andL1

has an Abelian idealA. Then, we must have

[A,A] = 0 [A,L1] ⊆ A.
Moreover, [A,L1] is clearly an Abelian sub-Lie algebra ofL. We then calculate

([A,L1], [A,L1]) = ([[A,L1], A], L1)
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but [A,L1] ⊆ A and hence, [[A,L1], A] = 0. Thus, ([A,L1], [A,L1]) = 0 so that
[A,L1] = 0 identically. We now note [A,L] ⊆ [L,L] = L1 so that [[A,L], A] = 0. We
then calculate([A,L], [A,L]) = ([[A,L], A], L) = 0 which leads to [A,L] = 0, since
[A,L] is also a nilpotent sub-Lie algebra ofL because of [[A,L], A] = 0, and hence
[[A,L], [A,L]] = [A, [L, [A,L]]] ⊆ [A,L1] ⊆ A. Therefore,(A,L1) = (A, [L,L]) =
([A,L], L) = 0. However,A ⊆ L1 = [L,L] so that this also requires(A,A) = 0, leading
to A = 0 identically. This proves thatL1 = [L,L] has no Abelian ideal, and hence is
semisimple. �

Now we are in a position to prove thatL must be a compact Lie algebra if the theory
does not allow any ghost state. To this end, we must restrict ourselves to consideration of
real (not complex) Lie algebras. The ghost-free condition requires that the matrixgab must
be positive (or negative) definite, i.e.

gabξ
aξb = gabξaξb

is always positive for any real numberξa, all of which are not identically zero. Then,
settingx = ξata, this implies(x, x) to be positive for non-zerox. It evidently satisfies the
condition of the theorem since(x, x) = 0 leads tox = 0. Therefore, theorems 3 and 1
imply L to be reductive, if we extend the field from real to complex fields. Since we are
dealing with real algebra, the positiveness ofgabξ

aξb also impliesL to be a compact Lie
algebra [4].

In conclusion, the physically viable gauge theory must be solely based upon a compact
Lie algebra. In this connection, we also note that Hickmanet al [12] have studied
Hamiltonian formulation of a gauge theory based upon a non-quasiclassical solvable Lie
algebra by embedding it to larger semisimple Lie algebras in the unsuccessful hope that the
quantization of such a theory may be possible in this way.

To end this paper, we remark that for some problems in mathematical physics the
appearance or absence of ghost states is not relevant. For such cases, the general
quasiclassical Lie algebra may be of some use. We have already noted that it has been
used for studies of flexible Lie-admissible algebras as well as of some solutions of the
Yang–Baxter equations. It may also be useful for studies of classical integrable models,
where the zero curvature conditionFµν = 0 may be used.
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